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Malonate semialdehyde decarboxylase (MSAD) fromPseudomo-
nas paVonaceae170 catalyzes the metal ion-independent decar-
boxylation of2 (Scheme 1), a catabolite generated by the bacterial
degradation of the nematocidetrans-1,3-dichloropropene.1 Searches
of the protein databases did not uncover a relationship between
MSAD and known decarboxylases but instead suggested that the
enzyme might be a member of a new family within the tautomerase
superfamily.1 The members of this superfamily are structurally
homologous proteins that share a characteristicâ-R-â-fold as well
as a catalytic amino-terminal proline.2 Sequence analysis, site-
directed mutagenesis, and chemical modification studies implicated
Pro-1 and Arg-75 as critical active-site residues in MSAD,1 thereby
supporting its association with the tautomerase superfamily and
suggesting two mechanisms for decarboxylation. In one mechanism
(Scheme 2A), Pro-1 is a charged species that polarizes the C-3
carbonyl group of2 by hydrogen bonding and/or an electrostatic
interaction. In a second mechanism (Scheme 2B), Pro-1 is nucleo-
philic and reacts with the C-3 carbonyl group to form a Schiff base.
In both mechanisms, Arg-75 may position the carboxylate group
in an orientation that favors decarboxylation. A distinguishing
feature between these mechanisms is the ionization state of the
amino group of Pro-1.

Previous work has shown that the reactions of 4-oxalocrotonate
tautomerase (4-OT) andtrans-3-chloroacrylic acid dehalogenase
(CaaD), the best characterized members of the 4-OT family in the
tautomerase superfamily, with 2-oxo-3-pentynoate (4, Scheme 3)
reflect both the ionization state of Pro-1 and the environment of
the active site.2-4 4-OT is irreversibly inactivated by4 due to the
covalent modification of Pro-1, whereas CaaD converts4 to
acetopyruvate (6, Scheme 3). The dissimilar reactions mirror
differences between the two active sites. Pro-1 of 4-OT has a pKa

of ∼6.4.5 Hence, at neutral pH, Pro-1 functions as a nucleophile
and attacks C-4 of4 in a Michael-type reaction.6 In contrast, the
pKa of âPro-1 in CaaD is∼9.2.7 Thus, a Michael-type reaction
between the amino group of proline and4 is not favored, and in
the active site of CaaD, which is designed to carry out a hydration
reaction,8 4 is processed to6.

In view of these observations, the reaction of MSAD with4 was
examined. Incubation of4 with MSAD resulted in a decrease in
the absorbance at 234 nm, corresponding to4, accompanied by
the appearance of a new absorbance peak at 294 nm, which
corresponds to acetopyruvate (6).9 In addition to the characteristic
λmax of 294 nm, the identity of6 in the incubation mixture was
confirmed by1H NMR spectroscopy.10 MSAD was not inactivated
by 4 in the course of these experiments. The results clearly show
that MSAD has a hydratase activity, from which it can be inferred
that Pro-1 is cationic and not functioning as a nucleophile.11

The kinetic parameters for the hydratase activity were determined
next (Table 1).12 A comparison of thekcat/Km values shows that

MSAD is 3.7× 104-fold less efficient in the conversion of4 to 6
than it is in the conversion of2 to 3, its physiological activity.13 In
comparison with the CaaD-catalyzed hydration of4,4b the value of
kcat for MSAD is ∼8.3-fold higher than that measured for CaaD,
while the Km value is∼87-fold higher. The net effect is a 10.7-
fold difference in thekcat/Km value. Mutagenesis of either Pro-1 or
Arg-75 to an alanine abolishes the hydratase activity of MSAD
(Table 1), thereby confirming both the importance of these residues
to the activity as well as the active-site nature of the activity.

To obtain direct evidence for the ionization state of Pro-1, the
pKa of the amino group was measured by a pH titration of the
uniformly 15N-labeled enzyme using15N NMR spectroscopy.15 The
15N-chemical shift of Pro-1 is resolved from the other15N
resonances of MSAD over the pH range 4.8-10.1, and monitoring
this resonance as a function of pH yields a pKa value of 9.2( 0.2
for the free enzyme (Figure 1).

The measured pKa value is consistent with the observed MSAD-
catalyzed hydration of4 and indicates that Pro-1 is primarily a
charged species in MSAD. The combined results argue strongly

Scheme 1

Scheme 2

Scheme 3

Table 1. Kinetic Parameters for MSAD and CaaD

enzyme sub kcat (s-1) Km (mM) kcat/Km (M-1 s-1)

MSAD 21 - - 2.2× 107

MSAD 4 5.8( 0.4 9.6( 0.9 6.0× 102

P1A14 4 <0.05 - -
R75A 4 <0.05 - -
CaaD 44b 0.7( 0.1 0.11( 0.01 6.4× 103
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for a decarboxylation mechanism involving the polarization of the
C-3 carbonyl group of2 by hydrogen bonding and/or an electrostatic
interaction (Scheme 2A), analogous to the mechanism proposed
for methylmalonyl CoA decarboxylase.16

Interestingly, the pKa of Pro-1 as well as the ability to carry out
a hydration reaction are two features shared with CaaD, an
evolutionarily related enzyme that catalyzes the preceding step (i.e.,
1 to 2 in Scheme 1) in the same catabolic pathway. Thus, the
hydratase activity of MSAD is an adventitious one and an example
of catalytic promiscuity in MSAD.17 Similar to the mechanism
proposed for the CaaD-catalyzed conversion of4 to 6,4b MSAD
might initiate the reaction by catalyzing the Michael addition of
water to the triple bond of4 to form an allenic species. Rearrange-
ment of this species produces5, which readily ketonizes to form
6. Arg-75 could facilitate the addition of water across the triple
bond by interacting with the 2-carbonyl group and polarizing this
group. Pro-1 then delivers a proton to the C-3 position of the allenic
species to complete the addition of water. In CaaD, the water
molecule is activated for attack byRGlu-52. Sequence analysis did
not identify a corresponding residue in MSAD, but a recent crystal
structure suggests that Asp-37 may play a similar role.18

MSAD is a fairly proficient hydratase using4. Although this
activity has no known consequences for the organism’s metabolism,
its presence in both CaaD and MSAD coupled with the identical
pKa values of Pro-1, suggests that the two enzymes divergently
evolved from a common ancestor, conserving elements of the
catalytic machinery necessary for the conjugate addition of water.19

The results of this study further support a role for the catalytic and
binding promiscuity of theâ-R-â-fold, the key structural com-
ponent of tautomerase superfamily members, in the diversification
of enzyme function within the tautomerase superfamily.
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Figure 1. The pH titration curve displaying the15N-chemical shift of the
amino group of Pro-1 versus pH.
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